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Abstract

Purpose – This paper’s aim is to examine flow and heat transfer through vertical channels between
parallel plates, which is of prime importance in the design of cooling systems for electronic
equipment such as that of finned cold plates in general, plate-and-frame heat exchangers, etc.
Design/methodology/approach – Numerical and analytical solutions are presented to investigate
the heat transfer enhancement and the pressure drop reduction due to buoyancy effects (for
buoyancy-aided flow) for the developing laminar mixed convection in vertical channel between
parallel plates in the vicinity of the critical values of the buoyancy parameter (Gr/Re)crt that are
obtained analytically. The numerical solutions are presented for a wide range of the buoyancy
parameters Gr/Re that cover both of buoyancy-opposed and buoyancy-aided flow situations under
each of the isothermal boundary conditions under investigation.
Findings – Buoyancy parameters greater than the critical values result in building-up the pressure
downstream of the entrance such that the vertical channel might act as a thermal diffuser with
possible incipient flow reversal. Locations at which the pressure gradient vanishes and the locations
at which the pressure-buildup starts have been numerically obtained and presented for all the
investigated cases.
Research limitations/implications – The study is limited to the laminar flow situation.
Practical implications – The results clearly show that for buoyancy-aided flow, the increase of the
buoyancy parameter enhances the heat transfer and reduces the pressure drop across the vertical
channel. These findings are very useful for cooling channel or chimney designs.
Originality/value – The study is original and presents new findings, since none of the previous
studies reported the conditions for which pressure buildup might take place due to mixed convection
in vertical channels between parallel plates.
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Nomenclature

A, B Integration constants of Equation
(20)

C1, C2 Coefficients of Equation (21)

C3 Coefficients of Equation (24) for
forced flow

CP Specific heat of the fluid

b Gap width between the parallel
plates

Dh Characteristic length of the
vertical channel; b

dP/dZ Dimensionless pressure gradient

F Body force per unit volume,
Equation (2)

Gr Grashof number
g�ðTw � ToÞD3

h=�
2 ¼

g�ðTw � ToÞb3=�2

Gr/Re Buoyancy parameter
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(Gr/Re)crt Critical value of buoyancy
parameter

p Local pressure at any cross
section of the vertical
channel

po Hydrostatic pressure, �ogz at
channel entrance

P Dimensionless pressure
inside the channel at any
cross section ðp� po=�u2

oÞ
Pr Prandtl number ð�Cp=kÞ
Q
000

Rate of heat generation per
unit volume, Equation (3)

Re Reynolds number ð�uoDh=�Þ
(¼ �uob=�)

To Ambient or fluid inlet
temperature

Tw Isothermal temperature of
the heated wall

T1, T2 Isothermal temperatures of
plate 1 and plate 2 of parallel
plates

u Axial velocity component

�uu Average axial velocity

uo Uniform entrance axial
velocity

U Dimensionless axial velocity
at any point (u=uoÞ

v Transverse velocity component

V Dimensionless transverse
velocity (v Re=uo)

y y-coordinate of the vertical
channel between parallel
plates

Y Dimensionless y-coordinate
ðy=DhÞ

z Axial coordinate (measured
from the channel entrance)

Z Dimensionless axial coordinate
in Cartesian coordinate
systems ðz=DhReÞ

ZI Distance from the channel
entrance to the locations of zero
pressure gradient

ZII Distance from the channel
entrance to the locations of zero
pressure

Zin Distance from the channel
entrance to the location of
numerical instability

Zfr Distance from the channel
entrance to the location of onset
of flow reversal

Zfd Distance from the channel
entrance to the location of
hydrodynamic fully
development length

Greek letters

� Dimensionless temperature
ðT � ToÞ=ðTw � ToÞ

�T Wall temperature difference
ratio T2 � To=T1 � Toð Þ

� Density of the fluid

�o Density of the fluid at the
channel entrance

� Dynamic viscosity of the fluid

� Kinematic viscosity of the fluid
ð�=�Þ

� Volumetric coefficient of
thermal expansion

Subscripts

fd Fully developed

forced Forced flow

mxd Mixed Convection

Crt Critical

1. Introduction
The analysis of flow and heat transfer through vertical channels between parallel
plates is of prime importance in the design of cooling systems for electronic equipment
such as that of finned cold plates in general, plate-and-frame heat exchangers, etc. In
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such systems, analysis of the combined free and forced convection in a channel
provides information on the flow structure in the developing region and reveals the
different length scales accompanying the different convective mechanisms operating in
the developing flow region.

Even though most equipment is designed for operation in the turbulent flow regime,
laminar flow has to be considered for partial load operation. Under these conditions,
mixed convection through the vertical channels between parallel plates has been of
interest in research for many years. The early research related to flow and heat transfer
under mixed convection through parallel plate channels has been well cited by Inagaki
and Komori (1995). Some of this early work includes studies by Cebeci et al. (1982) and
Aung and Worku (1986a). Using dimensionless parameters, Aung and Worku (1986a)
obtained a criterion for the existence of reversed flow under thermal boundary
conditions of uniform heating on one wall while the other wall was thermally insulated.
Yao (1983) studied mixed convection in vertical channel between parallel plates with
symmetric uniform temperature and symmetric uniform flux heating and conjectured
that fully developed flow might consist of periodic reversed flow. Barletta (2001)
analytically investigated laminar and fully developed mixed convection in a vertical
rectangular duct under thermal boundary conditions such that at least one of the four
duct walls is kept isothermal. In this study, special attention was devoted to two sets of
thermal boundary conditions:

(1) two facing duct walls were kept isothermal with different temperatures and the
others are kept insulated; and

(2) two facing duct walls had a uniform wall heat flux and the others are kept
isothermal with the same temperature.

In both cases, the conditions for the onset of flow reversal were obtained. Boulama and
Galanis (2004) presented exact solutions for fully developed, steady state laminar
mixed convection between parallel plates for thermal boundary conditions of uniform
wall temperature (UWT) and uniform heat flux (UHF). Their results showed that the
buoyancy effects significantly improve heat and momentum transfer rates near
the heated walls of the channel. They (Boulama and Galanis, 2004) also analyzed the
conditions for flow reversal. Analyzing the behavior of the flow with opposing
buoyancy forces, Hamadah and Wirtz (1991) obtained values of Gr/Re beyond which
flow reversal takes place. Quantitative information on the effect of buoyancy forces on
temperature and velocity fields has been provided in a numerical study reported by
Aung and Worku (1986b). These authors noted that buoyancy effects dramatically
increase the hydrodynamic development distance. With asymmetric heating, the bulk
temperature is a function of Gr/Re and the ratio of temperature difference between the
walls, �T, and decreases as �T is reduced. Wirtz and McKinley (1985) conducted
laboratory experiments on downward mixed convection between parallel plates where
one plate heated the fluid (i.e. buoyancy-opposed flow situation). Ingham et al. (1988)
numerically investigated the steady laminar combined convection flow under
asymmetric constant wall temperature boundary conditions. They recorded reversed
flow in the vicinity of the cold wall for combinations of the buoyancy parameter Gr/Re
and �T. Their results showed that for a fixed value of �T, heat transfer is most efficient
for Gr/Re large and negative (i.e. buoyancy-opposed flow). They also found that for a
fixed value of Gr/Re heat transfer is most efficient when the entry temperature of the
fluid is equal to the temperature of the cold wall. A laminar developing flow
was observed in the absence of heating. Gau et al. (1992) experimentally studied
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buoyancy-assisted convection flow and heat transfer in a heated vertical channel
between two parallel plates for situations where the buoyancy parameter Gr/Re2 is
relatively large. One of the plates was uniformly heated while the other was kept
insulated. A uniform flow was made to enter the channel from the bottom. The
reversed flow, which occurs initially near the channel exit, was visualized for the case
when Gr/Re2 is greater than a threshold value. Huang et al. (1995) carried out
experimental studies of the mixed convection flow and heat transfer in a vertical
convergent channel. One of the side walls which was kept in the vertical position was
heated uniformly, and the opposite wall which had a convergence angle of 3o was
insulated. The ratio of the height to the width at the inlet of the channel was 15. During
the experiments, the Reynolds number ranged from 100 to 4,000 and the buoyancy
parameter, Gr/Re2, ranged from 0.3 to 907. Flow structure inside the channel was
visualized with a heated smoke wire. The visualization experiments showed that for
both assisted and opposed convection, flow reversal occurs only in the upstream of the
channel but not in the downstream where rapid acceleration of flow occurs and the
transport process is dominated by forced convection. Hammou et al. (2004) studied
laminar mixed convection of humid air in a vertical channel with evaporation or
condensation at the wall. The results showed that the effect of buoyancy forces on the
latent Nusselt number is small. However, the axial velocity, the friction factor, the
sensible Nusselt number and the Sherwood number are significantly influenced by
buoyancy forces. Kasagi and Nishimura (1997) obtained direct numerical simulation
for the fully developed combined forced and natural turbulent convection in a vertical
plane channel between two parallel plates kept at different temperatures. Szpiro et al.
(1984) presented numerical solutions for developing combined convection between
uniformly heated vertical parallel plates

In a research pertinent to the buoyancy effects on the pressure development along a
vertical channel, Han (1993), through his analysis of mixed convection in vertical pipes,
proved that in buoyancy-aided flow situations with UHF, there is a certain point at
which, the pressure gradient dP/dZ will become positive, i.e. the pressure will build up in
the axial direction of the vertical heated pipe if the pipe is tall (long) enough. In this
regard, Behzadmher et al. (2003) showed Re-Gr combinations that result in a pressure
increase over the tube length from those resulting in a pressure decrease. They reported
the values of Gr above which a pressure increase, rather than a pressure decrease, will
take place over the tube length in the flow direction due to the buoyancy effects as
Gr ¼ 4 � 105 for Re ¼ 1,000 and Gr ¼ 3 � 105 for Re ¼ 1,500. Recently, Mete and
Orhan (2007) presented exact analytical results for fully developed mixed convective heat
transfer of a Newtonian fluid in an open-ended vertical parallel plate microchannel with
asymmetric wall heating at uniform heat fluxes. The velocity slip and the temperature
jump at the wall are included in the formulation. The effects of the modified mixed
convection parameter, Gr/Re, the Knudsen number, Kn and the ratio of wall heat flux, on
the microchannel hydrodynamic and thermal behaviors are determined. Cimpean et al.
(2009) considered a fully developed mixed convection flow between inclined parallel flat
plates filled with a porous medium through which there is a constant flow rate and with
heat being supplied to the fluid by the same uniform heat flux on each plate. They
developed non-dimensional equations governing this flow that are seen to depend on two
dimensionless parameters, a mixed convection parameter and the Péclet number, as well
as the inclination of the plates to the horizontal.

The thorough literature cited above revealed that most of the work reported on
mixed convection in vertical channels between parallel plates emphasized the
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buoyancy effects on the heat transfer parameters (Inagaki and Komori, 1995; Cebeci et al.,
1982; Aung and Worku, 1986a; Yao, 1983; Barletta, 2001; Boulama and Galanis, 2004;
Hamadah and Wirtz, 1991; Aung and Worku, 1986b; Wirtz and McKinley, 1985; Ingham
et al., 1988; Gau et al., 1992; Huang et al., 1995; Hammou et al., 2004; Kasagi and
Nishimura, 1997; Szpiro et al., 1984; Mete and Orhan, 2007; Cimpean et al., 2009). Some of
this work gave attention to the flow reversal phenomena for buoyancy-opposed flow
situations (i.e. for upward flow in a cooled channel or downward flow in a heated
channel; Aung and Worku, 1986a; Yao, 1983; Barletta, 2001; Boulama and Galanis, 2004;
Hamadah and Wirtz, 1991; Aung and Worku, 1986b; Wirtz and McKinley, 1985; Ingham
et al., 1988). None of this previous work investigated or justified the presence of flow
reversal for buoyancy-aided flow situations. On the other hand, available in the literature
are a limited number of research articles that emphasized the buoyancy effects on the
hydrodynamic flow parameters of mixed convection in vertical channels between
parallel plates such as the pressure gradient and pressure drop (Han, 1993; Behazadmher
et al., 2003). The literature analysis revealed also that the pressure buildup through a
vertical channel due to mixed convection was implicitly shown by Aung and Worku
(1986b), El-Shaarawi and Sarhan (1980) and Mokheimer and El-Sharawi (2004a). This
pressure buildup might be the cause of flow reversal in buoyancy-aided flow situations.
Mokheimer and El-Sharawi (2004b) demonstrated and proved the presence of critical
values of Gr/Re at which the pressure gradient vanishes and beyond which pressure
buildup takes place due to mixed convection in vertical eccentric annuli under thermal
boundary conditions of third kind. Recently, the present authors, Mokheimer and Sami
(2006), obtained and presented the critical values of Gr/Re for mixed convection in
vertical eccentric annuli under thermal boundary conditions of first kind. However, none
of the previous studies reported the conditions for which pressure buildup might take
place due to mixed convection in vertical channels between parallel plates. In other
words, none of the previous work exactly reported the values of the buoyancy
parameters Gr/Re for which the pressure gradient becomes zero and above which
positive pressure gradient might prevail along vertical channels between parallel plates
leading to a pressure buildup rather than pressure drop downstream the entrance of such
vertical channels under mixed convection conditions. Moreover, none of the previous
studies reported exactly the locations at which pressure gradient starts to be positive
and/or the positions at which the pressure buildup commences in a vertical channel
between parallel plates due to buoyancy effects. The importance of the careful analysis,
the lack of exact information regarding the hydrodynamic behavior of laminar flow
under mixed convection conditions motivated the authors to investigate the laminar
mixed convection in vertical channels, in general (Sami, 2005).

The first objective of the present study is to present the critical values of Gr/Re for
which the pressure gradient (dP/dZ) becomes zero for fully developed mixed
convection in vertical channels between parallel plates under isothermal boundary
conditions. In this regard, the exact values of these critical values of the buoyancy
parameters are to be presented for the first time in the public literature.

The second objective of the present study is to numerically investigate the heat
transfer enhancement and the pressure drop reduction due to buoyancy effects (for
buoyancy-aided flow) for the developing laminar mixed convection in vertical channel
between parallel plates in the vicinity of the critical values of the buoyancy parameter
(Gr/Re)crt that are obtained analytically. The numerical solutions are presented for a
wide range of the buoyancy parameters Gr/Re that cover both of buoyancy-opposed
and buoyancy-aided flow situations under each of the isothermal boundary conditions
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under investigation. Numerical solutions for buoyancy-aide flow situations with
Gr/Re > (Gr/Re)crt are used to calculate and present for the first time the exact
locations at which pressure gradient starts to be positive and/or the positions at which
the pressure buildup commences in a vertical channel between parallel plates. The
buoyancy effects on changing these locations downstream the channel entrance are
investigated over a wide range of the buoyancy parameter Gr/Re. The effect of Prandtl
number on the hydrodynamic behavior of the mixed convection flow is also targeted in
this study. Moreover, the heat transfer enhancement presented by the amount the heat
absorbed by the fluid from the channel walls per unit of the pumping power is obtained
and presented for the first time.

2. Problem formulation and governing equations
The general governing equations of flow and heat transfer are the conservation
equations of mass, momentum (Navier-Stokes equations) and energy. Assuming
constant physical properties, one can write the full conservation equations in a
vectorial form as follows.

Continuity equation

r:V ¼ 0 ð1Þ

Momentum equation

�
DV

Dt
¼ F �rP þ �r2V ð2Þ

Energy equation

�Cp
DT

Dt
¼ kr2T þ Q000 þ �� ð3Þ

It is worth mentioning that the left-hand side of Equation (2) represents the inertia
forces; the terms on the right-hand side denote the body force (buoyancy), the pressure
gradient that represents the external driving forces (that are provided via a pump, a
fan, a blower, a compressor, a valve, etc.), and viscous friction forces, respectively. The
superimposition of forced convection and natural convection and the interaction
between their driving forces in mixed convection flows is well explained by Han (1993).

For the problem under consideration, Figure 1 depicts two-dimensional channel between
two vertical parallel plates. The distance between the plates is ‘‘b’’ i.e. the channel width.
The Cartesian coordinate system is chosen such that the positive z-axis is in the vertical
direction and points to the flow direction. The gravitational body force per unit mass ‘‘g’’ is
always acting downwards. The y-axis is orthogonal to the channel walls, and the origin of
the axes is such that the positions of the channel walls are at y ¼ 0 and y ¼ b.

The flow is assumed to be steady with negligible viscous dissipation and internal
heat generation. The body forces other than the gravitational body force are absent
everywhere. The fluid is assumed to be a Newtonian fluid of constant properties but
obeys the Boussinesq approximation. Thus, the density of the fluid will vary only in the
gravitational body force term as function of the temperature according to Boussinesq
approximation. Assuming that the depth of the channel is very large compared to its
width and height, two-dimensional flow conditions can be considered.
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The flow is assumed to be hydrodynamically as well as thermally developing through the
vertical channel between the two parallel plates. In the present study, uniform flow
temperature (To) and uniform flow velocity (uo) were assumed at the channel entrance. The
boundary layer approximation along with the uniform inlet velocity and temperatures is
adopted in line with the previous studies (Aung and Worku, 1986b; Han, 1993; El-Shaarawi
and Sarhan, 1980; Du et al., 1998; Barletta et al., 2006). Moreover, the justification of the
boundary layer approximation and uniform inlet conditions for mixed convection in the
entrance region of vertical channels can be found in the previous studies (Aung, 1987).

After performing order of magnitude analysis that is based on the boundary layer
approximation, the momentum equation in the transverse direction reduces to
�@p=@y ¼ 0, which implies that the pressure along the channel does not vary in the
transverse direction and varies only in the vertical (axial) flow direction, applying the
Boussinesq approximation and using the pertinent dimensionless parameters given in
the nomenclature, the governing equations can be written in dimensionless form as:

Continuity equation

@U

@Z
þ @V

@Y
¼ 0 ð4Þ

Z-momentum equation

U
@U

@Z
þ V

@U

@Y

� �
¼ � @P

@Z
� Gr

Re
�þ @2U

@Y 2

� �
ð5Þ

where the þ and � signs of the (�) sign of the buoyancy term in the above equation
are for buoyancy-aided flow and buoyancy-opposed flow, respectively.

Energy equation

U
@�

@Z
þ V

@�

@Y
¼ 1

Pr

@2�

@Y 2

� �
ð6Þ

Figure 1.
Schematic view of the
system and coordinate

axes corresponding to (a)
upflow and (b) downflow
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Equations (4)-(6) are subjected to the following boundary conditions:

At Z ¼ 0; 0 < Y < 1 : U ¼ 1; V ¼ P ¼ � ¼ 0

Z > 0; Y ¼ 0 : U ¼ V ¼ 0; � ¼ 1

Z > 0; Y ¼ 1 : U ¼ V ¼ 0; � ¼ �T ð7Þ

It is worth noting here that the entering fluid temperature has been used as a reference
temperature in the Boussinesq approximation and the expression for the dimensionless
temperature for the two cases of fully developed and developing flow. In spite of being
bizarre for the fully developed flow problem modeling, the use of the entering fluid
temperature as a reference was deliberately adopted for the sake of comparison between
the analytical solution obtained for the fully developed flow and that obtained
numerically from the numerical solution of the developing problem at great distances
from the entrance. It is worth mentioning here also that the entering fluid temperature
has been used as the reference temperature by Aung and Worku (1986a, b) and Hamadah
and Writze (1991) in their analysis of mixed convection in vertical channels between
parallel plates. On the other hand, Barletta and Zanchini (1999) set the reference
temperature equal to the arithmetic mean temperature over the cross section of the duct
while Boulama and Galanis (2004) adopted the temperature of the cooler wall as
reference due to its physical convenience and simplicity in expressing the thermal
boundary conditions. This is consistent with our choice of the reference temperature for
the case of �T ¼ 0. It is worth noting here that P in the momentum equation is the
pressure difference between the local pressure at any location (height) of the channel and
the pressure at the channel inlet. Thus, at the channel inlet P in Equation (7) will be zero.

3. General analysis and fully developed analytical solutions
The analytical solutions of the governing equations in the fully developed region are
derived here in order to demonstrate the presence of critical values of the buoyancy
parameter Gr/Re at which the pressure gradient (dP/dZ)fd vanishes and above which
pressure builds up in the flow direction in vertical channels due to the buoyancy effects.
Moreover, the analytical solutions obtained will be used to determine the critical values of
Gr/Re.

The assumption of a fully developed mixed convection flow implies, here, that the
flow is both hydrodynamically and thermally fully developed. Under such conditions,
the transverse velocity component vanishes and the axial velocity component becomes
invariant in the flow direction, i.e. ð@U=@ZÞ ¼ 0. Moreover, heating (or cooling) with at
least one of the walls is kept isothermal, makes ð@�=@ZÞ ¼ 0 in the fully developed
region. Thus, the governing equations pertinent to the problem of fully developed
laminar mixed convection between vertical parallel plates for both buoyancy-aided and
buoyancy-opposed flows are written as:

� dP

dZ

� �
fd; mxd

�Gr

Re
�þ d2U

dY 2

� �
¼ 0 ð8Þ

d2�

dY 2
¼ 0 ð9Þ

It is worth mentioning here that under the fully developed conditions U and � are



Heat
transfer

enhancement

875

functions of Y only while the pressure is not a function of Y. Thus, the pressure
gradient (dP/dZ) is constant to satisfy Equation (8). On the other hand, the general
solution for the fully developed energy equation (9) can be obtained by integrating
Equation (9) twice and its general form can be written as:

� ¼ AY þ B ð10Þ

where A and B are the integration constants that are to be evaluated under the isothermal
boundary conditions given in Equation (7) and are given as: A ¼ �T � 1, B ¼ 1.

Substituting Equation (10) into Equation (8), one can write the axial momentum
equation as:

d2U

dY 2
þ C1Y þ C2 ¼ 0 ð11Þ

where

C1 ¼ �
Gr

Re
A and C2 ¼ � dP

dZ

� �
fd;mxd

þ �Gr

Re

� �
B:

Integrating Equation (11) twice and applying the no slip boundary conditions (U ¼ 0)
at both walls (i.e. at Y ¼ 0 and Y ¼ 1), one can obtain the general solution for the axial
velocity (Ufd, mxd) as:

Ufd;mxd ¼ � dP

dZ

� �
fd;mxd

þ �Gr

Re

� �
B

 !
Yð1� YÞ

2
þ �Gr

Re

� �
A

Y ð1� Y 2Þ
6

ð12Þ

or simply:

Ufd;mxd ¼ C2
Yð1� YÞ

2
þ C1

Yð1� Y 2Þ
6

where C1 and C2 are as defined above:

ð13Þ

It is worth noting here that the fully developed velocity profile for pure forced flow
can be obtained from Equation (12) by just equating the buoyancy-force term to
zero, i.e. putting Gr/Re ¼ 0 in Equation (12). Thus the velocity profile for pure forced
flow is:

Ufd; forced ¼ C3
Yð1� YÞ

2
where C3 ¼ � dP

dZ

� �
fd; forced

ð14Þ

3.1 Calculation of critical value of the buoyancy parameter (Gr/Re)crt for isothermal
boundary conditions
The average axial velocity at any section of the channel is the same for both forced and
mixed convection which is equal to 1. This is because of steady flow satisfaction. Thus,
one can write:
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uaverage =uo ¼ �UUfd; forced ¼ �UUfd;mxd ¼ 1

Therefore, the integral form of continuity equation for both forced convection and
mixed convection can be written as:

ð1
0

Ufd; forceddY ¼
ð1
0

Ufd;mxddY ð15Þ

Substituting the velocity profile for the mixed convection flow given by Equation (13)
and for that of the pure forced flow given by Equation (14) into Equation (15), one gets:

ð1
0

C3
Yð1� YÞ

2
dY ¼

ð1
0

C2
Yð1� YÞ

2
þ C1

Yð1� Y 2Þ
6

� �
dY

After integrating, one gets:

dP

dZ

� �
fd;mxd

¼ dP

dZ

� �
fd; forced

þ �Gr

Re

� �
A

2
þ B

� �
ð16Þ

where (dP/dZ)fd,forced is the pressure gradient due to pure forced flow and can be
obtained via applying the integral form of the continuity equation for pure forced flow
as follows:

ð1
0

Ufd; forceddY ¼ 1

Substituting for the velocity profile for pure forced flow given by Equation (14) into the
above equation, one gets:

dP

dZ

� �
fd; forced

¼ �12

Inspecting Equation (16), one should keep in mind the following facts. For pure forced
flow, the pressure gradient (dP/dZ)fd,forced is always of negative value as derived above.
On the other hand, the value of the constant A ranges between �1 and 0 for the
isothermal boundary conditions under considerations including all the values of �T,
(�T ¼ 0 to 1), and it will be always positive for any value of �T >1. Moreover, the
constant B in Equation (16) is always positive and equals to 1 for the isothermal
boundary conditions considered. Thus the value of the quantity ðA=2Þ þ B is always
positive, i.e. ðA=2Þ þ Bð Þ � 0. Thus, it can be clearly seen from the above equation,
Equation (26), and the above discussion that the pressure gradient (dP/dZ)fd,mxd might
vanish if and only if the buoyancy parameter term has the positive sign. This is
possible only for the situations of buoyancy-aided flow. Thus, a general expression for
the critical value of the buoyancy parameter, (Gr/Re)crt at which the pressure gradient
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becomes zero can be obtained by simply equating the pressure gradient due to mixed
convection (dP/dZ)fd, mxd, given by Equation (16), to zero which yields:

Gr

Re

� �
crt

¼
2 � dP

dZ

� �
fd; forced

ðAþ 2BÞ ¼
2 � dP

dZ

� �
fd; forced

ð�T þ 1Þ ¼ 24

ð�T þ 1Þ ð17Þ

Equation (17) represents a general expression for the critical buoyancy parameter
(Gr/Re)crt at which the pressure gradient vanishes and above which the onset of
pressure build-up takes place. Moreover, Equation (17) makes it possible to obtain the
critical values of the buoyancy parameter, (Gr/Re)crt, under isothermal boundary
conditions under consideration for any value of temperature ratio of the two isothermal
walls, �T, via substituting the values of �T in Equation (17). Figure 2, given below,
presents the critical values of buoyancy parameter (Gr/Re)crt for different values of �T.

It is worth mentioning here that Equation (16) can be also used to evaluate
analytically the fully developed pressure gradient for mixed convection flow in a vertical
channel between parallel plates under isothermal boundary conditions, with different
values of �T, over a wide range of the buoyancy parameter, Gr/Re, that covers buoyancy-
opposed and buoyancy-aided mixed convection flows including the pure forced
convection flow. These values are shown in Figure 3 for some of the investigated cases. It
should be noted that the buoyancy parameter Gr/Re always takes a positive value
according to its definition. However, the positive and negative signs used in front of the
values of the buoyancy parameter in Figure 3 are due to the sign of the buoyancy term in
the momentum equation, Equation (5), where the positive sign is used for buoyancy-
aided flow situations while the negative sign is used for buoyancy-opposed flow
situations as indicated earlier. It is quite clear from Figure 3 that buoyancy-opposed flow
situations, the increase of the buoyancy increases the pressure drop across the channel

Figure 2.
Critical values of the
buoyancy parameter

Gr/Re for different
values of uT
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compared with the forced flow situations. However, for buoyancy-aided flow situations
the fully developed pressure drop decreases with the increase of the buoyancy parameter.
Moreover, the more increase of the buoyancy effects might lead to pressure build up. The
values of the buoyancy parameter at which the pressure builds up for buoyancy-aided
flow are those obtained analytically and given in Equation (17). The effect of the
buoyancy on the pressure drop reduction and the heat transfer enhancement of the
developing buoyancy-aided flow are presented in section 7 hereinafter.

3.2 Conditions for flow reversal under isothermal conditions
The fully developed velocity profile can be obtained via the back substitution of
Equation (16) into Equation (12) and the obtained expression can be written as

Ufd;mxd ¼ �6YðY � 1Þ þ 1

12
�Gr

Re

� �
ð1� �TÞð2Y 3 � 3Y 2 þ YÞ ð18Þ

Equation (18) can be used to obtain an analytical expression for the condition (value of
the buoyancy parameter (Gr/Re)) at which flow reversal commences in vertical channel
between parallel plates under the isothermal boundary conditions. Flow reversal takes
place when the velocity gradient in the transverse direction becomes less than or equal
to zero; ðdU=dYÞ � 0. This condition is usually encountered at the walls where the
flow suffers the highest retarding resistance due to the viscous effects. Thus, the
analytical expression for the condition of flow reversal is obtained via differentiating
the velocity profile with respect to the transverse direction, Y, and applying the
condition of flow reversal, ðdU=dY Þ � 0. In applying this condition at the two walls,

Figure 3.
Variation of the fully
developed pressure
gradient with the
buoyancy parameter for
different values of the
walls temperature ratio
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one should take care of the positive direction of the Y-coordinate and the behavior of
the velocity profile at the two walls. In this regard, one should notice that in case of flow
reversal at the wall of Y ¼ 0, the gradient is negative since the velocity changes from
zero at the wall (no-slip conditions) to a negative value in the layer adjacent to the wall.
On the other hand, in the case of flow reversal at the other wall of Y ¼ 1, the velocity
gradient acquires appositive gradient in the positive Y-direction such that it changes
the velocity from a negative value (reversed flow) in the layer adjacent to the wall into a
zero value at the wall (no-slip conditions). Thus, expressing the first derivative of the
velocity profile with respect the transverse coordinate Y in the positive direction should
be as per the following expressions:

dU

dY

����
Y¼0

� 0 and
dU

dY

����
Y¼1

� 0 ð19Þ

Applying the above conditions for buoyancy-aided and buoyancy-opposed flows
revealed that the values of the buoyancy parameter (Gr/Re) that makes flow reversal
commence at one of the channel walls is given as:

Gr

Re

� �
� 72

ð1� �TÞ
ð20Þ

The flow reversal would take place at the buoyancy-driving wall (the wall of �T ¼ 1)
for buoyancy-opposed flow situations and on the corresponding wall (the wall of
0 � �T < 1) for buoyancy-aided flow situations. Figure 4, below, depicts the velocity

Figure 4.
Velocity profiles for the

case of uT ¼ 0, for
buoyancy-aided and

buoyancy-opposed flow
situations of different

values of Gr/Re
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profiles for the case of �T ¼ 0 for different values of the buoyancy parameter Gr/Re
for both buoyancy-aided and buoyancy-opposed flows as well as for pure forced flow,
(Gr/Re) ¼ 0. It is worth reminding here that the � signs in front of the buoyancy
parameter in the label of some of velocity profiles in this graph stand for buoyancy-
opposed flow while the positive numbers represent the buoyancy-aided flow as per
the notations followed in this article. The velocity profiles clearly confirm the above
discussion. It is quite clear that the flow reversal would commence for both situations
of buoyancy-aided and buoyancy-opposed flows for the same value of the buoyancy
parameter (i.e. (Gr/Re) ¼ 72 for the case of �T ¼ 0) where the gradient of the velocity
profiles is exactly zero for the two cases but at the opposite walls as discussed above
and as clearly shown in Figure 4. For buoyancy parameters (Gr/Re) > 72 (for the case
of �T ¼ 0) flow reversal takes place for both situations of buoyancy-aided and
buoyancy-opposed flow but at the opposite walls. This result confirms that
concluded by Barletta and Zanchini (1999). Moreover, the results presented in
Figure 4 for buoyancy-opposed flow are identical to those presented by Boulama and
Galanis (2004) with the notice that the values of the buoyancy parameters reported
by Boulama and Galanis (2004) and Barletta and Zanchini (1999) are four and eight
times the corresponding values reported in the present article, respectively. These
differences among these particular three articles (Boulama and Galanis, 2004;
Barletta and Zanchini, 1999 and present) are due to the three different definitions of
the characteristic length used in defining the Grashof and Reynolds number. In the
present work, the characteristic length was selected as the width of the channel in
order to compare the present results with that of Aung and Worku (1986a, b)
(particularly the numerical results of the developing region; Aung and Worku,
1986b). On the other hand, Boulama and Galanis (2004) defined the characteristic
length as twice the channel width while Barletta and Zanchini (1999) defined it as
four times half of the channel width. Thus, the criterion of flow reversal that is
exactly the same for the three articles, was reported differently in the three article for
the case of �T ¼ 0 as: (Gr/Re) � 72 in the present work), (Gr/Re) � 288 by Boulama
and Galanis, 2004) and (Gr/Re) � 576 by Barletta and Zanchini, 1999). It is worth
reporting here that the work reported by Boulama and Galanis (2004) indicates that
they studied the case of buoyancy-opposed flow for upward cooled flow. They did not
report results for buoyancy-aided flow. On the other hand, Barletta and Zanchini
(1999) reported that flow reversal will take place for both buoyancy-aided and
buoyancy-opposed flow situations but at opposite walls if the buoyancy parameter
exceeded specific limit. This conclusion is consistent with the findings of the present
work as discussed above. The velocity profiles, shown in Figure 4, indicate that the
velocity at the middle of the channel is independent of the buoyancy parameter Gr/
Re. This is consistent with the findings of other researchers (Boulama and Galanis,
2004; Barletta and Zanchini, 1999).

4. Numerical scheme and method of solution
The flow and heat transfer governing equations in the developing region, Equations
(4)-(6), subjected to the entrance conditions and the thermal and hydrodynamic
boundary conditions, Equation (7) is solved numerically using standard finite
difference techniques. In this regard, the dimensionless continuity equation, Equation
(4) is written in the following finite difference form, according to Miyatake and Fujii
(1972):
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VðkÞ ¼ Vðk� 1Þ � �Y

2 � Z
½Uðk� 1Þ þ UðkÞ � U �ðK � 1Þ � U �ðkÞ�

� �
ð1� YÞ

þ V �ðkþ 1Þ þ � Y

2 � Z
½Uðkþ 1Þ þ UðkÞ � U �ðK þ 1Þ � U�ðkÞ�

� �
ðYÞ

ð21Þ

The finite difference form of the dimensionless momentum equation, Equation (5) is:

U �ðkÞ UðkÞ � U �ðkÞ
�Z

� �
þ V �ðkÞ Uðkþ 1Þ � Uðk� 1Þ

2�Y

� �

¼ � PðkÞ � P�ðkÞ
�Z

� �
þ Gr

Re

� �
�ðkÞ þ Uðkþ 1Þ � 2UðkÞ þ Uðk� 1Þ

ð�YÞ2

" # ð22Þ

The finite difference formulation of energy equation is:

U�ðkÞ �ðkÞ � �
�ðkÞ

�Z
þV �ðkÞ �ðkþ 1Þ � �ðk� 1Þ

2�Y

� �
¼ 1

Pr

�ðkþ 1Þ � �ðk� 1Þ � 2�ðkÞ
ð�YÞ2

" #

ð23Þ

The superscript, *, in the above equations represents the previous axial step value. The
integral continuity equation can be represented by employing a trapezoidal rule of
numerical integration taking into consideration the no-slip conditions at the walls as
follows:

Xn

k¼2

UðkÞ
" #

�Y ¼ 1 ð24Þ

5. Numerical results accuracy and code validation
5.1 Numerical results grid-independence tests
The numerical scheme developed above was tested for grid-independent solutions in the
axial and transverse directions. In this regard, grids of mesh size of 10�5, 10�7 and 10�10

were taken in the axial (flow), Z-direction near the entrance where the gradients are so
high. This very small grid size in the Z-direction was gradually increased till it reaches a
constant value of 10�3 near the fully developed region where the gradients of the flow and
heat transfer parameters vanish. The preliminary results revealed that axial step starting
with a value of 10�10 at the channel entrance and increases gradually in an exponential
form till it reaches the value of 10�3 far downstream is the best to capture the high
gradients and simulates the flow dynamics with the best accuracy near the entrance.
Thus, all the results of the presented work were developed using the very fine grid size, of
10�10 in Z-direction near the entrance of the channel. On the other hand, different grid sizes
were tested in the transverse Y-direction till numerical grid-independent results were
obtained. The numerical value of the hydrodynamic fully development length, Zfd, was
taken as the criterion for the grid size independence test in the Y-direction. The fully
developed length was defined in the present work as the length at which the developing
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velocity profile approaches its pertinent fully developed analytical profile within 0.1
percent deviation. In this regard, Figure 5 summarizes the results of the grid independence
test that was conducted at the beginning of the present work. It was observed that for
coarse grid, the value of hydrodynamic fully development length is high and as the
number of nodes increases in the Y-direction, the hydrodynamic fully development length
decreases. No more significant variation in the value of fully developed length was
recorded for the grid points or nodes greater than 50. This was also confirmed for other
parameters such as the Nusselt number, the mean bulk fluid temperature, etc. Thus a
numerical mesh of 50 grid points in the Y-direction was used to obtain all the results.

5.2 Numerical results accuracy
The numerical scheme and the developed solution code were validated by comparing
the results obtained via the presently developed code with the pertinent results that are
available in the literature. In this regard, special runs of the code were conducted for the
pure forced flow, Gr/Re ¼ 0. The presently obtained results via these special runs were
compared with the results reported by Shah and London (1978). The results of such
comparison revealed the values of the Nusselt number obtained via the present code far
downstream the channel entrance are 4.0047 and 3.9951 on the heated and the cooled
walls, respectively. These are corresponding to the value of 4 as reported by Shah and
London (1978) with a maximum deviation of about 0.12 percent which represents an
excellent agreement. Finally, the present numerical code was also validated via
comparing the developing velocity profiles, pressure and mean bulk fluid temperature
with that reported by Aung and Worku (1986b). The graphical comparisons presented
in Figure 6 reveal an excellent agreement between the presently obtained results and
that reported earlier by Aung and Worku (1986b). It is worth reporting here that
velocity profiles far down stream the channel entrance obtained via all the computer
runs of the numerical codes approached the pertinent fully developed analytically
obtained velocity profiles within 0.1 percent deviation for all the values of the
buoyancy parameter, Gr/Re including the situations of flow reversal that does not
create flow and numerical instability. It is worth mentioning here that it would be
better to validate the numerically obtained results against the pertinent experimental
results, if available. However, there were no experimental results available for mixed
convection in vertical channels between parallel plates under isothermal boundary
conditions. The only experimental results available in the literature are those published

Figure 5.
Graphical representation
of grid independence test
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in Gau et al. (1992) and Huang et al. (1995) for uniform heat flux and adiabatic walls. On
the other hand, validation of the numerically obtained results with the pertinent
analytical solutions, if available, against analytical solutions would represent a
reasonable enough validation. In this regard, the critical values of the buoyancy
parameter (Gr/Re)crt that were obtained analytically for the investigated thermal
boundary conditions were used as input to the present numerical code and the pressure
gradient in all the cases developed from its very high negative value at the entrance and
asymptotically reached its exact value of the zero in the fully developed region. The
development of the pressure gradient for these particular cases of Gr/Re ¼ (Gr/Re)crt are
plotted as dotted lines in Figures 7(a, c). Approaching the fully developed analytically
obtained values for different parameters, exactly or within a negligible deviation, via the
numerical code that solves the governing equations of the developing region far down
the channel entrance represent an excellent validation of the developing region model,
the numerical scheme and the presently developed computer code.

6. Numerical results presentation and discussion
Having the confidence in the mathematical model, numerical scheme and the computer
code, the authors used the presently developed computer code to generate a huge
amount of data for mixed convection in vertical channels between parallel plates under
isothermal boundary conditions over a wide range of the buoyancy parameter Gr/Re.
However, more emphasis was devoted to the buoyancy-aided flow situations. This was
based on the fact that the pressure buildup takes place downstream a vertical channel
only under buoyancy-aided flow conditions as discussed above and as reported earlier
by Aung and Worku (1986b), Han (1993), Behazadmher et al. (2003), El-Shaarawi and
Sarhan (1980), Mete and Orhan (2007), Cimpean et al. (2009), Mokheimer and
El-Shaarawi (2004a, b), Mokheimer and Sami (2006) and Sami (2005).

Figures 7(a, b) depict the developments of the pressure gradient (dP/dZ) and the
pressure defect (P), respectively, through the entrance region of a vertical channel
between parallel plates under isothermal boundary conditions with �T ¼ 0 over a wide
range of the buoyancy parameter Gr/Re. These two Figures 7(a, b) show that the
dimensionless pressure defect develops from zero at the channel entrance with a very
high negative pressure gradient at the entrance acquiring negative values due to the

Figure 6.
Comparison between the
present work and that of
Aung and Worku (1986b)
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friction between the walls and the fluid which results in building up of two boundary
layers over the two walls due to the viscous effects. These negative values of the
pressure will continue increasing due to the corresponding negative pressure gradient
for the cases of pure forced flow (Gr/Re ¼ 0) and the buoyancy-opposed flow cases. For
pure forced flow and buoyancy-opposed flows with low buoyancy effects, the pressure

Figure 7.
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gradient develops from a very high negative value at the entrance and continues
negative with a decreasing negativity till it reaches asymptotically to its fully
developed negative value. This behavior of the pressure gradient shows that both the
viscous forces and buoyancy forces act in the same direction opposing the forced flow
direction trying, both, to retard the flow. The direct result of the act of these two forces
for buoyancy-opposed flow is to create and develop more negative pressure defect in
the flow direction which is evidently presented in Figure 7(b). It is worth mentioning
here that large values of the opposing buoyancy parameters lead to flow reversal and
consequentially it leads faster to flow instability as shown in Table I.

On the other hand, for buoyancy-aided flow situations represented by the positive
values of Gr/Re in Figures 7(a, b), the pressure defect develops from its zero value at the
entrance acquiring negative value downstream due to the high negative pressure
gradient at the entrance for all values of the buoyancy parameter Gr/Re. This negative
pressure gradient with large negative values at the entrance develops downstream with
a decreasing negativity approaching asymptotically its negative value for relatively low
values of the buoyancy parameter Gr/Re. However, for large values of the buoyancy
parameter Gr/Re for buoyancy-aided flow situations the pressure gradient develops from
its very high negative value at the entrance with a decreasing negativity with an
increasing rate such that it reaches zero and then continues increasing reaching
asymptotically its fully developed positive value as shown in Figure 7(a). For situations
of buoyancy-aided flow with relatively low values of the buoyancy parameter, Gr/Re, the
buoyancy forces act in the same flow direction aiding the flow to overcome the viscous
effects and the development of the pressure defect looks similar to that of pure forced
flow but with lower negative values in the fully developed region (i.e. with less pressure
drop along the channel). However, for buoyancy-aided flows with relatively large values
of the buoyancy parameter, Gr/Re, the buoyancy forces aiding the flow develop
downstream not only balancing out the viscous forces but also overcoming viscous
forces resulting in pressure buildup. Within this positive range of the buoyancy
parameter Gr/Re for buoyancy-aided flows, there exists a value of the buoyancy
parameter at which the pressure gradient develops from the usual very high negative
value at the entrance to its asymptotic value of exactly zero. This particular value of the
Gr/Re, at which (dP/dZ ¼ 0) exists only for buoyancy-aided flow as it is evidently shown
in Figure 7(a). This particular value has been referred to as the critical value of Gr/Re,
(Gr/Re)crt. The existence of these critical values of Gr/Re has been mathematically
demonstrated and its values were analytically obtained in section 3.1 above. The
developments of the pressure gradient and the pressure defect for buoyancy-aided flow
with the buoyancy parameter equals to (Gr/Re)crt are shown as dotted lines in Figures
7(a, b), respectively. For this particular case, the dimensionless pressure defect is
developing from its zero value at the entrance acquiring a negative value due to the
dominant viscous effects at this region. Further downstream, and due to the continuous
heating, the buoyancy effects participate in controlling the flow and its effect develops in
the flow direction till it balances exactly the viscous forces for this particular case
resulting in exactly a zero pressure gradient in the fully developed region as shown in
Figure 7(a) and consistently constant but negative pressure throughout the channel
height till the fully developed conditions achieved as shown in Figure 7(b).

For buoyancy-aided flows with Gr/Re > (Gr/Re)crt, the buoyancy forces acting in
the flow direction are not effective directly after the channel entrance due to the time
needed for the heat to penetrate and alter the fluid density resulting in a developing
effect of the buoyancy forces which eventually overcome the viscous forces at distances
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Table I.
Location of numerical
instability, onset of
flow reversal location
and location of
hydrodynamically fully
development length
in laminar mixed
convection between
vertical parallel plates
for the thermal BC
of first kind and
for different uT
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that depend on the value of Gr/Re (heating rates). These distances are nothing but the
distance from the entrance to the locations at which the developing negative pressure
gradient crosses the line of zero value and inverts its sign to be a positive pressure
gradient. For such situations, the dimensionless pressure defect will also develop from
its zero value at the entrance acquiring negative value due to the friction at the
entrance. This is a direct result of the viscous effects at the entrance, which will be
gradually balanced and eventually overcome by the developing buoyancy forces. This
results in a buildup of the pressure making the pressure defect develop gradually with
a decreasing negativity till it crosses the line of zero pressure defect and continue
building up creating a monotonically increasing positive pressure as shown in Figure
7(b). On the other hand for values of (Gr/Re) < (Gr/Re)crt,, both the pressure gradient
and the pressure defect acquire negative values throughout the downstream of the
channel entrance. Similar results but for the case of �T ¼ 1 are shown in Figures 7(c)
and (d), respectively.

These four Figures 7(a-d) are only sample of the results obtained from the
investigated cases. It is clear from these four figures that for situations with
(Gr/Re) > 0, the buoyancy effects act in the flow direction aiding the flow, to overcome
the friction due to the fluid viscous effects. This would definitely results in reducing the
load on the pumping device (pump for liquid and compressor for gases). For buoyancy-
aided flows with (Gr/Re) > (Gr/Re)crt the pressure buildup due to the buoyancy effects
explained earlier results in monotonically increasing positive pressure. For relatively
higher values of (Gr/Re) >> (Gr/Re)crt, the channel would have higher buoyancy forces
that make the channel, due to high heating rates, act as a diffuser and the pumping
device in such cases might work as a flow regulator (this was noticed and reported by
Han, 1993). However, for very high heating rates the pressure buildup, due to the
buoyancy-aiding effects, might result in a back pressure that is high enough to prevent
the fluid particles to continue flowing downstream the vertical channel in a similar
fashion to boundary layer separation in external flow over surfaces. In such situations,
flow reversal takes place, especially near the cold wall (for cases of asymmetric
heating) where the buoyancy effects are weaker. The locations of the flow reversal
onset in such situation was defined as the locations at which the velocity gradient at
the wall (ð@U=@YÞ � 0Þ. These locations (if any) are reported in Table I. Increasing
more the heating rate (Gr/Re) makes the flow reversal become more severe and the flow
will suffer from flow instability, which directly leads to numerical instability and the
computer code stops, since it is not formulated to solve flow instability problems. The
locations of the flow/numerical instability are indicated also in Table I. It is worth
noting here that the case of symmetric heating (�T ¼ 1.0) with buoyancy-aided flow
never suffers from flow reversal. This is attributed to the fact that for buoyancy-aided
flow situations, the buoyancy effects develop faster near both of the heated walls, in
this particular case, helping the flow to overcome the viscous effects. This is not the
case of asymmetric heating, especially when there is a big difference of temperature of
the two walls of the channel. Figures 8(a, b) depict graphical presentations of the
developing velocity profiles along a vertical channel between two parallel plates under
buoyancy-aided flow situations with asymmetric and symmetric heating conditions,
particularly with �T ¼ 0 and �T ¼ 1.0, respectively. It is clear from these two figures
that flow reversal will take place near the cold wall for the case of asymmetric heating,
�T ¼ 0, where the buoyancy forces are weaker than overcoming the back pressure
developed far downstream the channel. On the other hand, flow reversal will never take
place in the case of symmetric heating, �T ¼ 1.0 due to the buoyancy effects that are
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strong enough, near the two heated walls, to overcome the back pressure buildup,
within the investigated range of the buoyancy parameter, Gr/Re.

There are two important hydrodynamic parameters. The first one is the location at
which the pressure gradient, for buoyancy-aided flow with the buoyancy parameter
(Gr/Re) > (Gr/Re)crt, crosses the line of zero value changing its sign from negative
pressure gradient to positive pressure gradient (ZI). This represents the location at
which pressure buildup started. This pressure buildup results in increasing the
pressure defect from the negative value downstream the entrance with a positive
pressure gradient such that it reaches zero at location (ZII), the second important
hydrodynamic parameter, where it increases monotonically and positively
downstream. This location, ZII, is obtained for all the investigated cases and is reported
in Table II. The location, ZII, represents the height beyond which a vertical channel
with buoyancy-aided flow condition can act as a diffuser under a given isothermal
boundary condition. Caution should be taken in determining the operating heating
rates represented in terms of the buoyancy parameter Gr/Re such that flow reversal
due to pressure buildup can be avoided. The information that is obtained and
presented, in Table II, for different isothermal boundary conditions for different values
of Gr/Re would be of prime importance to the designer of heat transfer and flow
equipment. Such information would definitely help the designer to properly size the
pump or compressor needed to pump the fluid through channels subjected to
buoyancy-aided flow situations. It is clear that making the design and sizing of the
pump based on pure forced flow conditions would result in an oversized pumping
device, if the flow is buoyancy-aided flow or undersized if the flow is buoyancy-
opposed flow. The development of the pressure gradient and the pressure defect along
a vertical channel between parallel plates under thermal boundary condition of first
kind have been plotted in Figures 9(a, b) for a given value of the buoyancy parameter
(Gr/Re) ¼ 50 at different values of �T. These two figures show that the effect of the
buoyancy forces, on the development of the pressure gradient and the pressure,
increases with the increase of the temperature ratio of the cold wall with respect to that
of the hot wall, �T. This is clearly attributed to the increase of heating rates that
increases with the increase of the temperature ratio of the cold wall till its temperature

Figure 8.
Development of the
velocity profiles along
the channel



Heat
transfer

enhancement

889

reaches that of the hot wall. These increasing buoyancy forces with the increase of �T

engender more induced flow through the channel which helps the flow to overcome
faster the viscous forces near the two walls. This results in changing the pressure
gradient its sign from negative to positive at a location closer to the channel entrance.
Consequently, pressure buildup commences also closer to the channel entrance for
higher values of �T. In other words, ZI and ZII become closer to the channel entrance
with the increase of �T as it is evidently clear from Figures 9(a, b) and Table III. Due to
its importance, the values of ZI and ZII under thermal boundary conditions of the first
kind are plotted as function of the buoyancy parameter Gr/Re for different values of �T

in Figures 9 (c) and (d), respectively.
Effect of Prandtl number on the hydrodynamic parameters for laminar mixed

convection in vertical channel between parallel plates has been studied by closely
investigating the behavior of pressure gradient and pressure defect in the developing
region for fluids of different Prandtl number. The results were plotted for slightly
below and above critical value of buoyancy parameter (Gr/Re)crt for fluid of Pr ¼ 1, 10
and 100 under the isothermal boundary condition with �T ¼ 0. These values of Prandtl
number were selected to cover a considerable range of the fluids that are in common
practical and industrial use. A Prandtl number of order 1 represents gaseous fluids
with the particular value of 0.7 for air. The Prandtl number of order 10 represents
liquids such as water while Prandtl number of order 100 represents viscous oils. Un-
presented figures show the variation of pressure gradient and pressure defect as a
function of axial distance for different values of buoyancy parameter Gr/Re for each of
the investigated Prandtl numbers. All the figures exhibit similar behavior as that
presented for all cases of Pr ¼ 0.7. It is worth mentioning here that Prandtl number
has no effect on the critical value of (Gr/Re)crt under hydrodynamically and thermally
fully developed conditions. This can be easily shown analytically and it was confirmed

Table II.
Location of zero pressure

gradient and location
onset of pressure build

up between vertical
parallel plates for the

thermal BC of first kind
and for different uT

Gr/Re
�T ¼ 0 �T ¼ 0.25 �T ¼ 0.5 �T ¼ 0.75 �T ¼ 1.0

ZI ZII ZI ZII ZI ZII ZI ZII ZI ZII

20 0.28771 a 0.13907 a 0.09791 a 0.07607 0.23046
30 0.13465 0.51268 0.08433 0.26193 0.06176 0.18209 0.04844 0.14082 0.03958 0.11513
40 0.07402 0.22356 0.05210 0.15056 0.03948 0.11435 0.03141 0.09224 0.02587 0.07726
50 0.05219 0.14827 0.03727 0.10707 0.02834 0.08370 0.02265 0.06855 0.01874 0.05797
60 0.04009 0.11224 0.02846 0.08338 0.02169 0.06595 0.01741 0.05439 0.01448 0.04623
70 0.03205 0.09083 0.02263 0.06829 0.01735 0.05430 0.01401 0.04496 0.01170 0.03836
80 0.02621 0.07651 0.01856 0.05776 0.01434 0.04605 0.01163 0.03825 0.00973 0.03275
90 0.02187 0.06615 0.01563 0.04995 0.01215 0.03991 0.00989 0.03326 0.00829 0.02856

100 0.01858 0.05824 0.01342 0.04393 0.01050 0.03517 0.00857 0.02940 0.00718 0.02532
130 0.01252 0.04252 0.00929 0.03202 0.00732 0.02587 0.00598 0.02181 0.00499 0.01889
150 0.01018 0.03574 0.00762 0.02703 0.00601 0.02197 0.00488 0.01861 0.00400 0.01616
200 0.00679 0.02507 0.00508 0.01937 0.00391 0.01595 0.00292 0.01360 0.00122 0.01186
250 0.00493 0.01912 0.00355 0.01506 0.00138 0.01250 0.00100 0.01070 0.00087 0.00934
300 0.00365 0.01542 0.00122 0.01230 0.00093 0.01026 0.00081 0.00880 0.00073 0.00769
400 0.00098 0.01109 0.00080 0.00897 0.00071 0.00752 0.00064 0.00646 0.00059 0.00566
500 0.00077 0.00863 0.00066 0.00703 0.00059 0.00591 0.00054 0.00508 0.00050 0.00445
600 0.00066 0.00704 0.00058 0.00576 0.00052 0.00485 0.00048 0.00418 0.00044 0.00366
700 0.00059 0.00592 0.00052 0.00486 0.00047 0.00410 0.00043 0.00353 0.00040 0.00309

Note: aFor such cases, the pressure defect did not cross the value of zero before the fully
developed conditions
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numerically through the present investigation. The pressure gradient vanished for all
the investigated Prandtl numbers when the critical values that was obtained
analytically for the buoyancy parameters (Gr/Re)crt was used as input to the numerical
code. However, the locations at which the developing pressure gradient crosses the zero
value which are the locations of positive pressure gradient incipient, ZI, and the
locations of pressure buildup onset, ZII, for (Gr/Re) > (Gr/Re)crt as well as the fully

Figure 9.

Table III.
Effect of Prandtl number
on ZI and ZII and Zfd

(Gr/Re) ¼ 30 > (Gr/Re)crt, uT ¼ 0
Pr ZI ZII Zfd

0.7 0.1347 0.5127 0.3378
1 0.2087 0.7155 0.9238

10 2.0584 6.2967 8.3806
100 20.2054 62.0514 71.4482
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developed length vary with the variation of the Prandtl number. Table III gives an
example of the variation of the above-mentioned locations with Prandtl number for
isothermal boundary condition with �T ¼ 0.

7. Pressure drop reduction and heat transfer enhancements
The numerical results of the pressure development for different values of �T (e.g. those
presented in Figures 7(b) and 6(d) for �T ¼ 0 and �T ¼ 1, respectively) for buoyancy-
aided and buoyancy-opposed flows indicated clearly that for buoyancy-opposed flows,
the increase of the buoyancy parameter increases the pressure drop along a given length
of the channel. On the other hand, for buoyancy-aide flows, the increase of the buoyancy
parameter decreases the pressure drop along a given length of the channel for all values
of the buoyancy parameter in the range 0 < (Gr/Re) < (Gr/Re)crt. Moreover, for
buoyancy-aided flows with (Gr/Re) > (Gr/Re)crt, pressure build up might take place if the
channel is high enough with a possible incipient of flow reversal. It is worth repeating
here that these trends of the pressure development for different values of the buoyancy
parameter were reported by Aung and Worku (1986b) as presented in Figure 6(b).

On the other hand, the numerical results of the developing flow under mixed
convection through vertical channels between parallel plates under isothermal boundary
conditions revealed clearly that the increase of the buoyancy parameter enhances the
heat transfer. In this regard, the development of the Nusselt number on the heat transfer
wall and the opposite wall of the channel has been numerically estimated. To estimate
the Nusselt number at the two walls of the channel, the developing temperature profiles
along with the developing velocity profiles, are used to obtain the development of the
mean bulk fluid temperature as described by Equation (25):

�m ¼

Ð1
0

�ðYÞUðYÞ dY

Ð1
0

UðYÞ dY

ð25Þ

Equation (25) is evaluated numerically. The developing mean bulk fluid temperature is
used to obtain the developing Nusselt number at the active and passive plates of the
channel as described by Equations (28a) and (28b), respectively.

Nu1 ¼
�2

ð1� �mÞ
d�

dY

����
Y¼0

ð26aÞ

Nu2 ¼
2

ð�T � �mÞ
d�

dY

����
Y¼1

ð26bÞ

It is worth mentioning that the factor of 2 is introduced in Equations (26a) and (26b) to
make Nusselt number consistent with that reported in the literature (Shah and London,
1978). This is to count for the difference in the definition of the characteristic length
used in the present study as the channel width that is defined presently as while it is
defined as 2b in Shah and London (1978).

The development of the Nusselt number on the heat transfer wall and the opposite
wall of the channel are shown in Figures 10(a) and (b) for the case of �T ¼ 0. These two
figures show that the Nusselt number on the heat transfer increases with the increase
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of the buoyancy parameter while that on the opposite wall decreases with the
buoyancy parameter. This increase/decrease of the Nusselt number on the active/
opposite wall, results in an increase in the heat absorbed by the fluid flow in through
the channel. The heat absorbed by the fluid is represented by the development of the
mean bulk fluid temperature as shown in Figure 11 for different values of the buoyancy

Figure 10.
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parameter for buoyancy-aided flow with uT ¼ 0. One of the important parameters in
heat transfer equipment is the amount of heat transfer per unit of the pumping power.
The net rate of heat transfer in the present calculation is to be taken as the heat
absorbed by the fluid from the entrance to a given section in the channel. On the other
hand, the pumping power will be taken as the usual as the product of the flow rate and
the pressure drop from the entrance to the given section of the channel. Figure 12
shows the effect of the buoyancy parameter on the ratio of the heat transfer to the
pumping power for buoyancy-aided flow situations. This figure shows clearly that
the heat transfer per unit of the pumping power is significantly enhanced due to the
increase of the buoyancy parameter for buoyancy-aided flow for buoyancy parameter
below that causes pressure build up and the consequent flow reversal.

8. Conclusions
Buoyancy effects on the fully developed and developing hydrodynamic parameters such
as pressure and pressure gradient in the flow direction for a forced flow through vertical
channels between parallel plates have been numerically investigated under the thermal
boundary conditions of first kind. The investigation covers a wide range of the buoyancy
parameters Gr/Re for buoyancy-opposed and buoyancy-aided flow situations. The
analytical solution of the fully developed governing equations revealed the presence of
critical values of the buoyancy parameter (Gr/Re)crt at which the buoyancy forces balance
out the viscous forces. On the other hand, the numerically obtained results confirmed the
presence of these conditions. At these conditions, the pressure gradient develops from its
usual high negative value at the entrance with a decrease in its negativity till it reaches
asymptotically its exact value of zero. Buoyancy parameters greater than these critical
values result in building-up the pressure downstream the entrance such that the vertical
channel might act as a thermal diffuser with possible incipient of flow reversal. Locations

Figure 11.
Mean or bulk temperature
along the channel height

for different Gr/Re for the
thermal boundary

condition of first kind and
for uT ¼ 0 between

vertical parallel plates
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at which the pressure gradient vanishes and the locations at which the pressure-buildup
starts have been numerically obtained and presented for all the investigated cases.
Conditions for flow reversal have been obtained analytically for buoyancy-opposed and
buoyancy-aided flows as (Gr/Re) � 72/ (1� �T). Flow reversal in buoyancy-aided flow
situations is attributed to the high pressure build up due to higher buoyancy effects
corresponding to higher heating rates. This high pressure build up prevents the relatively
slow particles near the wall from penetrating more down stream in a similar fashion to
boundary layer separation in external flow over surfaces. Locations of flow reversal onset
for buoyancy-aided flows or the locations at which buoyancy-aided flow is converted to
buoyancy-opposed flow and the consequent higher pressure buildup in the flow direction
as well as the locations of flow instability due to flow reversal have been also calculated
and presented for all the investigated cases. These locations become closer to the entrance
with increase of Gr/Re. Numerical values of the hydrodynamic development length which
increases due to higher heat transfer rates represented by higher values of Gr/Re are
presented. Effects of Prandtl number on some of the above-mentioned parameters have
been investigated and presented for one of the investigated thermal boundary conditions
as an example. The results clearly show that for buoyancy-aided flow, the increase of the
buoyancy parameter enhances the heat transfer and reduces the pressure drop across the
vertical channel.
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